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SUMMARY 
On the basis of the integral equation approach, numerical algorithms for solving non-linear water wave 
problem are presented. The free surface flow is assumed to be irrotational. Two different Green functions are 
used in the integral equations. The non-linear free-surface boundary conditions are treated by a time- 
stepping Lagrangian technique. Several numerical examples are given, including permanent periodic waves, 
overturning progressive waves, breaking standing waves and sloshing problems. 

KEY WORDS Integral equation Overturning progressive waves Breaking standing waves Sloshing 

1. INTRODUCTION 

The mathematical problem describing free surface flows is strongly non-linear because the free 
surface boundary conditions are not only quadratic in terms of the velocity field but also applied 
on the as yet undetermined free surface. In the past two decades many numerical models based on 
the integral equation approach have been developed to solve various free surface flow 
problems.’ 9 

F o r  two-dimensional flows two different approaches have been developed. The first approach 
is to convert the boundary value problem to an integral equation on the physical plane. The 
Green function used in this approach is usually the free space Green function (see Reference 3). 
Using this approach, Longuet-Higgins and Cokelet4 calculated the overturning (breaking) of 
periodic deep water waves. Grilli et al.’ have extended the approach to compute the breaking of 
periodic waves and a solitary wave in shallow water. Besides the wave-breaking problem, this 
approach has also been applied to other physical problems such as the sloshing problem,6. ’ wave 
run-up on steep slopes8, and wave-structure interactions. lo 

The second approach employs the Cauchy integral theorem to derive the integral equation in 
terms of the complex potential function. Vinje and Brevig’ presented this method with examples 
on periodic breaking waves. Many researchers have improved Vinje and Brevig’s model by using 
more accurate numerical integration schemes (see e.g. References 12 and 13). This approach has 
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also been applied to other physical problems such as the wave-maker problem14 and the free 
surface flow around a semi-finite body.I5 

Two primary issues concern every numerical free surface flow model based on the integral 
equation approach: (1) discretization of the boundary and the interpolation of variables over 
discretized boundaries; (2) the treatment of free surface boundary conditions. To improve the 
accuracy of the solutions, many researchers have used a higher-order interpolation function for 
both boundary discretization and numerical integrations. Unfortunately, the computational 
effort increases rapidly with higher-order elements. 

There are many different schemes for treating the non-linear free surface boundary conditions. 
For example, the scheme developed by Kim et a/.,' using the Crank-Nicolson method to move 
the free surface nodal points in specified directions, has been successfully applied to the wave 
run-up problem. Their method cannot be used to calculate the wave-breaking problem because 
the free surface nodes are not allowed to cross each other. The Eulerian-Lagrangian method 
introduced by Dold and Peregrine' * is most suitable for calculating the wave-overturning profile. 
In their approach the free surface location and the associated velocity potential are expanded in 
Taylor series. The particle velocity, acceleration and other higher-order time derivatives are 
obtained by solving a series of integral equations. 

In this paper we present a numerical model based on the integral equation approach. The 
model addresses two types of flows: periodic and non-periodic. For the periodic flows we employ 
two different Green functions: the conventional free space Green function and a periodic Green 
function. Using the periodic Green function, the integral equation is reduced to one integrating 
only over the free surface. The numerical efficiency of using these Green functions will be 
discussed in the numerical examples. 

In the present model the boundary is divided into straightline elements and the physical 
variables are assumed to vary linearly over each element. The integral equations can then be 
integrated analytically (see e.g. Reference 16). The Eulerian-Lagrangian method is employed to 
track the free surface movement. It is necessary to compute the tangential derivatives of several 
physical variables such as the potential function and its normal derivatives. To accomplish these 
goals, the cubic B-spline interpolation scheme is used. 

Several numerical examples are given herein. The accuracy of the numerical results is 
demonstrated by checking the conservation laws of mass and energy when possible. 

2. GOVERNING EQUATION AND BOUNDARY CONDITIONS 

In this paper we are interested in solving two-dimensional flows with a free surface. We assume 
that the fluid is inviscid and incompressible such that the velocity potential 4 satisfies the Laplace 
equation 

v%p = 0. (1) 

As shown in Figure 1, the computational domain R is bounded by a free surface Tr, a solid 
bottom rb and two lateral boundaries rl and Tr. Using the Cartesian co-ordinates ( x ,  z), we can 
define the velocity components u and w in the forms 

Along the boundaries we can introduce a set of local co-ordinates (s, n), where s is the unit 
tangential vector and n is the unit outward normal. The velocity components u and w can also be 
written in terms of the tangential velocity component d 4 / a s  and the normal velocity component 
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Figure 1. Definition sketch computational domain, co-ordinates and free-surface angle 

a#/&, i.e. 

where f l  is the angle between s and x. 
On the bottom boundary rb, the normal velocity component is zero, i.e. 

There are two boundary conditions on the free surface Tr. First we assume that the free surface is 
a material surface. Hence the fluid particles on the free surface will not leave the surface. Denoting 
the co-ordinates of fluid particles on the free surface as 

x = 5( t ;  xo), 

z = 5( t ;  zo), 

where x,= t(0; x,) and z ,  = [(O; z,), the kinematic boundary condition requires 

dt; d l  
- = u  and -=w o n r f .  
dt dt 

The second free surface boundary condition is derived from Bernoulli's equation, which can be 
written as 

_- D 4  - ----gt;+-[(--)2+('Y] P 1 84 on r, 
Dt P 2 ax (7) 

where g is the gravitational acceleration, p is the density of the fluid and p is the pressure on the 
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free surface. In equation (7) 

D a a d a  a 4 a  
DC at ax ax aZ a2 
-=-+--+-- 

represents the total time derivative, which calculates the time rate of change of a physical property 
following a fluid particle. 

Two types of lateral boundary condition are employed in this paper. The first kind is the 
periodicity condition in which the flow is periodic in the x-direction. Hence 

The second type of lateral boundary condition is to specify the normal fluxes on these boundaries, 
i.e. ad/an equals a known function of time. 

3. INTEGRAL EQUATION 

The boundary value problem described in the previous section can be converted into an integral 
equation integrating along the boundary T(Tf urburlur,). Using the Green second identity 
between the velocity potential 6 and a Green function G(x, x,) which satisfies the Poisson 
equation 

V2G(x, x,)=~(x-x,), (10) 
where 6 is the Dirac delta function, we obtain (see e.g. Reference 16) 

If the source point x, is located on the boundary, ci is the interior angle of the boundary at the 
source point. Equation (11) becomes an integral equation relating 6 and along the 
boundary. On the other hand, if the source point is an interior point, ci takes a value of 2.n. 
Equation (11) can then be used to calculate the velocity potential at any interior point. 

Different forms of Green function can be used in the integral equation (1 1). In this paper two 
kinds of Green function are used and corresponding solutions are compared. The first kind of 
Green function satisfies only the governing equation (10) without any boundary condition. Hence 

Gf (x, x,) = In r, r =  1 x - xol, (12) 
which is also called the free space Green function. The second kind of Green function is only 
suitable for periodic problems. Denoting I as the wavelength in the x-direction of the periodicity, 
we can define the Green function as 

m 

GJx, xo)= 1 (In r j + h  r;), 
j =  m 

with 

r j  = { [ x  - (x, +jA)12 + (z - z , ) ’ } ’ / ~ ,  

r; = { [x - (x, +jI)12  + (z  + 2h + z,)’}’/’, 
( 144 

( 14b) 
where h is the still water depth. The Green function given in equations (13) and (14) satisfies not 
only the governing equation (10) but also the periodic lateral boundary condition (9) as well as the 
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no-flux boundary condition along the bottom z = - h. The corresponding integral equation can 
be simplified to 

in which only the integration over the free surface is required. The advantages and disadvantages 
of using G ,  will be discussed in the numerical examples. 

4. NUMERICAL METHODS 

To solve the integral equation ( 1  1) or (15), the boundary of the computational domain is divided 
into straight line segments. Within each segment the potential and its normal derivatives are 
assumed to vary linearly. Placing the source point x, at each nodal point successively, we can 
integrate the integral equations analytically and obtain a system of linear algebraic equations for 
4j and (a4/an)j, 

N N 

, i = l , 2 , .  . ., N ,  
j =  1 j =  1 

in which N denotes the number of nodes on the boundary and bj and (a4/an)j are the values of 
i$ and ai$/an at the jth node. In (16), Ri j  and Lij depend only on the geometry of the boundary and 
have analytical forms (see Reference 16). 

To solve the system of linear algebraic equations, one must apply the boundary conditions. The 
implementation of the bottom and the non-periodic lateral boundary conditions is straightfor- 
ward: (a4/dn)-values at these boundary nodes are substituted into the appropriate terms on the 
right-hand side of (16); &values will be obtained on these boundaries by solving (16). In the case 
of a periodic problem the boundary condition (9) is used to replace the unknown 4 and &$/an on 
the downstream boundary by those on the upstream boundary. 

The free surface boundary conditions (6) and (7) are non-linear not only because they are in 
quadratic form in terms of velocity but also because they are applied on the surface which is not 
known u priori. For two-dimensional problems several numerical schemes have been developed. 
For example, Kim et al.* used the Crank-Nicolson method to move the free surface nodal points 
in specified directions. They implemented the scheme successfully to study the run-up of a solitary 
wave. Dold and Peregrine’ introduced the Taylor series expansion scheme which traces the fluid 
particle movements on the free surface. Therefore the scheme can be used to study steep waves 
and overturning waves. 

In this paper we adopt Dold and Peregrine’s approach with our own geometrical modelling 
technique. As indicated in (5), the free surface profile can be identified by tracking the position of 
fluid particles in time. Consider a fluid particle which moves from (5,  C) at time t to a new position 
(t’, r )  at time t + A t .  If the time interval At is small, the new particle position (< I ,  C’)  and the 
associated velocity potential 4‘ can be obtained by Taylor series expansions: 

d<  d2< (At)’ 
dt dt 2 

dC dz( (At)’ 
dt dt2 2 

D 4  D’4 (At)’ 
Dt Dt’ 2 

<’ = < +- At + 7 - + 0(At)3,  

i‘=C+-At+- - + ~ ( A c ) ~ ,  

4’=4+-~t+- - + 0 ( ~ t ) 3 ,  
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in which the right-hand-side terms are all evaluated at time t .  If all the time derivatives of 5, ( and 
4 are known, the new particle location and the associated potential can be calculated to a desired 
accuracy. In this paper the numerical model includes only the second-order time derivatives. 

From the free surface boundary condition (6)  and the definition of the velocity field we can 
calculate the first time derivatives readily: 

d5 a4 84  -=u=-cosp--sinB on r,, 
dt as an  

d i  84 84 -=w=-sinB+-cos/? on r,. 
dt as a n  

The normal velocity component &$/an on the free surface is obtained directly from the solution of 
the boundary integral equation. One can complete the evaluation of (18) if the tangential 
derivative of 4, @/as, as well as the slope of the surface, f l , can be estimated accurately. We use 
the B-spline scheme to model both 4 and the free surface elevation, which will be described in the 
next section. 

The total time derivative of 4 on the free surface can be rewritten as 

Once again, the right-hand-side terms are known quantities; the pressure field on the free surface 
is usually a known quantity. 

The second time derivatives of 5 ,  i and 4 can be expressed as5 

84  a24 a4 a24 a4t d B  
an  as2 as anas an  as ( u 2 + w 2 )  

( 194 

-~ a4t 84 a24 84  a24 
-+-7+-- as as as an  anas 

-- 

in which 

is the Eulerian time derivative of the potential. After the first-time-derivative problem is solved, 
becomes a known quantity on the free surface. However, the normal derivative of 4t on the free 
surface is still needed to calculate the second time derivatives. 

Because 4t satisfies the Laplace equation, the integral equations for 4, (1 1) and (15), also govern 
$+. Using (20) as the boundary condition on the free surface and other appropriate boundary 
conditions, we can solve (11) or (15) to obtain &pt/an on the free surface. We remark here that 
because the same set of integral equations is used for 4 and d t ,  the coefficient matrices R ,  and 
Lij in (16) remain the same. In other words, numerical integrations need to be performed only 
once. 
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5 .  GEOMETRICAL MODELLING 

On the free surface boundary we need to calculate the shape of the free surface profile, 8, and the 
tangential derivatives of the potential and its higher derivatives, such as &$/as, dz4/ands and 
d24 /dsz  in (19). The cubic B-spline scheme is used for this purpose. Although the description of 
this curve-fitting scheme can be found in the literature (see e.g. Reference 17), we highlight the 
scheme here for completeness. The cubic B-spline scheme creates a curve which goes through 
every ( N )  data point and is Cz-continuous everywhere. To achieve this, a set of (N + 2) control 
points is introduced so that the straight line connection of these control points creates a convex 
hull confining the B-spline curve." Denoting Pi ( i= 1 ,2 , .  . . , N )  as the physical variable attached 
to the ith node on the boundary and Qi (i=O, 1 , .  . . , N + 1) as the physical variable at  the ith 
control point, the relationship between { P }  and {Q} can be written as 

where 

[MI=  

[ Q N +  I )  

1 4 1 0 0 0  . . .  0 
0 1 4 1 0 0  . . .  0 
. . . . . . . . . .  
. . . . . . . . . .  
0 0 0 0 0 0 1 4 1 0  
0 0 0 0 0 0 0 1 4 1  

Note that { P }  is an N x 1 vector, { Q} is an (N + 2) x 1 vector and [ M I  is an N x ( N  +2) tridiagonal 
matrix. Because the value of the physical variable is given at nodal points, i.e. {P} is known, (21) 
can be used to determine the value of the physical variable at the control points {Q} provided that 
two more conditions are introduced. For the periodic problem the periodic boundary conditions 
are used, i.e. the first and second derivatives of { P }  with respect to r]  are required to be periodic. In 
the non-periodic situation additional conditions are provided by calculating the slopes of the 
curve at end points based on a local four-point curve-fitting scheme. 

Once {Q} is determined, the variation of the physical variable between two adjacent nodal 
points can be found in terms of a single parameter r]  and four control points as'' 

in which 0 I r]  I 1 with P(0) = Pi  and P (  1) = P i +  '. When the co-ordinates of the free surface are 
used in (21), equation (23) provides the transformation between the physical space (t, [) and the 



1126 P. L.-F. LIU, H.-W. HSU AND M. H. LEAN 

parametric space q. Denoting s as the measure of the arc length along the free surface, the 
transformation Jacobian J can be defined as 

J = !! = [ ($) + ($) '1 - ' I 2 ,  
ds 

in which ax/aq and az/aq can be readily obtained from (23), i.e. 

and the form for az/aq is exactly the same; the values of the control points are of course different. 
The second derivative d2x/dq2 can also be readily expressed as 

Q i -  1 

a q 2  - 6 6 -12 
q1+2 

Since the slope of the free surface profile is defined as (see Figure 1)  

the derivative of p with respect to the arc length along the free surface can be written as 

which can be calculated by using (25) and (26). The above equation is needed in evaluating (19a) 
and (19b). 

a2#J/anas and a2#J/as2. For a#J/as 
the control points are first determined based on the @-values at each free surface nodal points. 
Once the vector { Q } ,  is found, the tangential derivative of #J can be written as 

The cubic B-spline scheme is also used to determine 

The same formula can be used for a2#J/anas. except that the control points { Q }  are determined 
from the nodal point values of a@/dn. The second derivative of @ with respect to s can be written 
as 

The formula for the second derivative of @ with respect to q is the same as (26) with { Q }  being 
determined from the vector {@} on the free surface. 
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6. NUMERICAL EXAMPLES 

On the basis of the algorithm discussed herein, computer programmes have been written in 
Fortran. Several numerical examples are discussed in this section. 

6.1. Permanent periodic waves 

To verify the numerical scheme, we first calculate the propagation of a train of permanent 
periodic waves and compare the numerical results with the analytical expressions obtained by the 
streamfunction wave theory.". The wave properties employed in the computations are as 
follows (see p. 392 of Reference 19): wavelength A = 26.43 m, wave height H = 2.10 m, water depth 
h = 12.49 m and wave period T= 4 s. The wave slope nH/1 is approximately 0.25. The wave train is 
non-linear but stable. 

Both the free space Green function (12) and the periodic Green function (13) are used in the 
numerical experiments. When the free space Green function is employed, the boundary consists of 
the free surface, two lateral vertical boundaries and the horizontal bottom. The length of the 
computational domain is one wavelength. Several different combinations of element sizes and 
time step sizes have been tried. The numerical solutions shown in Figure 2 are obtained using 100 
elements on the boundary (40 elements on the free surface and 20 elements each on the lateral and 
bottom boundaries). The time step size is 002s, which is 1/200th of one wave period. 
Figure 2 shows the comparison between numerical results and streamfunction solutions over 12 
wave periods. The agreement is very good. 

To further ensure the accuracy of the numerical solutions, the conservation of mass and energy 
is examined. First, integrating the free surface elevation over a wavelength should result in a zero 

It - 4 - + - t-+ -+ - + - f -+,A I I 1 1 1 1 I I 

I I I I 1 I 1 
0 10 2 0  30 40 

(m) 
Figure 2. Evolution of a permanent wave train over 12 wave periods: --, streamfunction solutions; -, present 

numerical solutions 
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quantity. However, owing to numerical inaccuracy, we can define an error term as 

where H is the initial wave height and 1 is the wavelength. 
The kinetic energy and the potential energy of the periodic waves can be calculated from 

in which p is the density and g is gravitational acceleration. The total energy is the sum of kinetic 
and potential energy. Thus ET = Ek + E,.  The relative error is defined as 

where ET is the total energy calculated from initial conditions. 
In Figures 3(ab3(d) numerical results of the free surface profile at the end of the 12th wave 

period are compared with streamfunction solutions. In these computations 100 elements are used 
to represent the boundary. However, different time step sizes are employed. Numerical results 
obtained using larger time step sizes At = TI100 and TI50 show that the phase speeds are slightly 
larger than those predicted by the streamfunction theory. In the same set of figures the errors for 
the conservation of mass and energy are also plotted for each different time step size used. It is 
quite obvious that both errors decrease when At decreases. Specifically, when At is smaller than 
T/200, both errors are smaller than 0.2% during the first 12 wave periods. For the time step size 
At=0.08, s = TI50 a significant amount of error in total energy is accumulated even though the 

- 3 1  -0.41 

I0 20 30 40 510 
0.50 

t (sec) 
- 0 4  0.48 - 

Figure 3(a). Numerical solutions for a permanent wave train. ( 1 )  Free surface profile at the end of the 12th wave period; 
-, streamfunction solution; -, present solution. (2) Time history of numerical error in mass conservation. (3) Time 
history of numerical error in energy conservation. (4) Time history of normalized kinetic and potential energy. To obtain 

the numerical solutions, 100 elements have been used and the time step size is 0.01 s 



2D NON-LINEAR WATER WAVE PROBLEMS 

0 2 ~ -  

~ r n ~ ~  0 

- 0  2 . ~  

1129 

0 51 

0 50  
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0.4 0.52 
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0.50 
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t (sec) 
-0.2 

-0.4 

Figure 3(b). See caption of Figure 3(a). The time step size is 0.02 s 

Figure 3(c) See caption of Figure 3(a). The time step size is 0.04 s 

mass conservation is generally satisfied. The algorithm breaks down soon after r = 1 1  T. Numer- 
ical experiments have also been performed to examine the effects of element size. In Figure 
4 numerical solutions are shown for the case where only 50 elements are distributed along the 
boundary (20 elements on the free surface and 10 elements each on the other three boundaries). 
The time step size is Ar =0.01 s =  T/400. The effects of increasing element sizes are equivalent to 
those of increasing time step sizes, i.e. numerical solutions have a faster phase speed and the 
relative errors in mass and energy conservation also increase. 

In all the numerical results shown, the second time derivatives are calculated in the numerical 
scheme for tracking the free surface particles. One can, however, achieve similar accurate 
numerical results without including the second time derivatives by using very small time step sizes 
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Figure 4. See caption of Figure 3(a). In this set of computations 50 elements have been used and the time step size is 0.01 s 

0.2 

E e  7 0  0 m -0.2 

--  

.. 

~~ 

0 .4 
I 

10 20 30 40 50 60 70 
x (m) 

(see equation (17)). A typical set of results is shown in Figure 5,  in which 100 elements are used 
and the time step size is At=0.0005 s. Without calculating the second time derivatives, we save 
some computing time. However, this is not enough to offset the increase in computing time, 
because a much smaller time step size is required. Moreover, the errors in total energy are still 10 
times higher than those obtained with the second time derivatives. 

Numerical solutions are also obtained by using the periodic Green function (13). In this 
approach only the free surface is discretized. However, a large number of terms must be used in 
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Figure 5. See caption of Figure 3(a). In this set of computations, only the first time derivatives were used in tracking the 
free surface movements; 100 elements were used and the time step size was 0.0005 s 

Table I. FLOPS required for using the periodic Green function and the free-space Green function 

Periodic Green function Free-space Green function 

Integrations 65 (an) (2crmn) 
Decomposition +(an)3 
Backward substitution (4 

6511' 
5 n 3  
n2 

Total ( 1  30 M + l )azn2 ++ a3n3 66n2 ++ n3 

n: total number of elements 

m: number of terms used in the periodic Green function 
ctn: number of elements on the free surface 

the periodic Green function. Because of the slow rate of convergence of the logarithmic functions 
for the permanent waves studied in this section, 81 terms are necessary to obtain the same 
accurate solutions as those obtained from the free space Green function approach (see Figure 6). 
In Table I we estimate the FLOPS required for these two approaches. It is quite clear that the 
approach using the periodic Green function becomes more efficient only if the number of 
elements is large. For the two-dimensional problem studied here (n = 100, rn = 81, an = 40), the 
total FLOPS are 1.7 x lo7 for using the periodic Green function and 1.3 x lo6 for using the free 
space Green function. The approach using the free space Green function is about eight times 
faster than that using the periodic Green function. The periodic Green function approach could 
become more efficient for three-dimensional problems, in which a much larger number of 
elements are required and the ratio of the number of free surface elements to the total number of 
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Figure 6. See caption of Figure 3(a). The periodic Green function was used in the computations; 81 terms were included; 
the free surface was divided into 40 elements and the time step size was 0.02 s 

Figure 7. Evolution and overturning of a finite amplitude periodic wave train 

elements (a) is smaller. Moreover, for three-dimensional problems the Green function l/r should 
converge much faster than In r. Hence, if we use the following data for a three-dimensional 
problem--n = 600, a =0.16, m = 21-the total FLOPS are 2.6 x lo7 for using the periodic Green 
function and 1.8 x lo* for using the free space Green function. 
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6.2. Overturning waves 

The numerical schemes developed for permanent waves are extended to simulate overturning 
waves. The initial conditions used are sinusoidal waves with a rather large wave amplitude. The 
wave parameters are: wave height H = 20.0 m, wavelength I = 110.0 m, water depth h = 600 m 
and wave period T= 8.4 s. The wave slope nH/1 is approximately 0.57 and is over the stability 
limit. 

In the numerical experiments several combinations of different element sizes are tested. For 
instance, the numerical results shown in Figure 7 were obtained with 140 elements on the 
boundary (80 elements on the free surface and 20 elements each on the other boundaries). In this 
figure the evolution of the unstable waves is demonstrated. The free surface develops a vertical 
front at =3.00 s. After that time the overturning process begins. The time step size is actually 
defined to be the maximum value that allows all surface nodes to travel less than or equal to half 
of the minimum distance between two adjacent nodes. 

The computation eventually terminates when the tip of the water jet reaches the lower part of 
the free surface. An automatic regridding routine has been employed to obtain the results shown 
in Figure 7. Without the regridding routine the numerical scheme breaks down before the jet 
reaches the free surface. The reason for the breakdown can be seen in Figure 8, in which a time 
sequence of velocity vectors in the vicinity of the tip of the water jet is plotted. Two important 
features are revealed: (1) element size becomes very small near the tip, which results in an 
ill-conditioned system of equations; (2) the velocity vectors cross each other near the tip. 
A regridding algorithm is necessary and is implemented in the following manner. The largest and 
smallest elements on the free surface are identified at each time step. When the ratio between the 
lengths of the maximum element and the smallest element is greater than 18, the nodal points 
between these extreme elements are shifted by a small amount such that the length ratio becomes 
smaller than 18. This simple regridding scheme shows that the condition number of the matrix 
equation does not increase drastically. This regridding schcme works very well for overturning 
problems. It has not been proven for general problems. 
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Figure 8. Numerical solutions in the neighbourhood of the time of an overturning wave 
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Figure 9(c). See caption of Figure 9(a). The boundary is divided into 100 elements 

In Figures 9(a)-9(c) three sets of numerical results are presented to demonstrate the conserva- 
tion properties of the numerical scheme. Numerical results shown in Figure 9(a) are obtained by 
using 140 elements with 80 elements on the free surface and 20 elements each on the other three 
boundaries. The regridding scheme is used in this case. Figure 9(b) show numerical solutions 
obtained by using the same discretization but without the regridding scheme. In Figure 9(c) 100 
elements are used with 40 elements on the free surface and 20 elements each on the other three 
boundaries. In all three cases numerical errors are presented in terms of energy conservation and 
mass conservation. It is interesting to note that the total energy is almost perfectly conserved up 
to t = 3.0 s, at which time the free surface becomes vertical. The mass conservation is satisfied 
within 0.2% up to the time when the system breaks down. Numerical solutions are also obtained 
using the periodic Green function. When more than 81 terms are used in the periodic Green 
function, the numerical solutions obtained from the two different Green functions are almost 
identical. 

6.3. Sloshing problem 

The third example concerns sloshing in a rectangular basin. The depth of the basin is h = 0 6  m 
and the width is W= 0.9 m. The basin is forced to oscillate horizontally. The response of the free 
surface movement is sought. The natural frequencies of the sloshing modes can be estimated as 

w,,=[g 2 tanh (F)] 112 , 
(35) 

where L, = 2 W/(2n + 1) with an integer n. The natural frequency of the first mode (n  =0) for this 
basin is 

w,=5.761 s-'. 
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If the forcing frequency is near the natural frequency, the free surface oscillation can be resonated. 
Two sets of numerical solutions are presented here. In the first problem the forcing frequency is 
wf = 5.5 s-  ', while the second problem has a forcing frequency wf = 5.0 s-'. The first problem 
observes the resonance phenomenon. 

To obtain the numerical solutions, the lateral boundary conditions are specified as 

X ( t ) = x ,  cos wf t  on r, and I-,, (36) 

= f wf x, sin wf t on rl and r,, y) 
an  (37) 

where x, is the amplitude of the basin oscillation. In the first problem w,x,=0.02 ms-', while 
ofx,=006 m s-' for the second problem. The treatment of corner points, the intersection point 
of the free surface and the vertical wall, is described here. We assume that the fluid particle 
occupying the corner will be a corner point forever. Hence the velocity vector at the corner point 
can be obtained from the information associated with the vertical wall (lateral boundary), i.e. the 
velocity component normal to the vertical is given in the boundary condition and the tangential 
velocity can be determined from the distribution of the potential function along the vertical wall. 
This approach has been generalized for an inclined side wall and is more accurate than other 
existing aproximated treatments (see e.g. Reference 7). 

In both computations the boundary is divided into 100 elements; (40 elements on the surface 
and 20 elements each on the lateral boundaries and the bottom boundary). The time step size is 
chosen to be 0.004 s. 

In Figure 10 the time history of the free surface displacement at the left corner point is plotted 
for the first problem. Since the forcing frequency is close to the natural frequency, the wave 
amplitude grows almost linearly in time. The corresponding time histories of the normalized 
potential energy and the normalized total energy are presented in Figure 11. The normalization 
factor is p g  Wx,. Because the sloshing motion is the first-mode ( n = O )  oscillations, the free surface 
profile becomes horizontal periodically. Hence the potential energy also becomes zero period- 
ically. It is interesting to observe that the total energy increases, but not monotonically, in time. 
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Figure 12. Free surface displacement at the left corner of the tank for the non-resonance case 

For the second problem the forcing frequency is wf = 5.0 s -  ’, which is quite different from the 
natural frequency of the basin, 0,=5.761 s-’. Because of the frequency difference, a ‘surf beat’ 
phenomenon is observed in the basin. In Figure 12 the time history of the free surface displace- 
ment at the left corner is shown. The wave period of the ‘beats’ (or ‘groups’) can be estimated as 
T= 2n/(w, - wf) = 9.03 s. The normalized total energy and the normalized potential energy are 
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Figure 13. Normalized potential and total energy for the non-resonance sloshing mode 
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Figure 14. Time history of numerical error in mass conservation for the non-resonance sloshing mode 

plotted in Figure 13. To check the conservation of mass, the dimensionless mean water level is 
shown in Figure 14. The stroke (0.012 m) has been used as the normalization factor, which is 
roughly 10 times the maximum wave amplitude. The maximum error is less than 3.5% after more 
than 5000 time step computations. 
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6.4.  Highest standing waves 

The last example calculates the free surface profile for highest standing waves. Taylor” 
performed laboratory experiments and showed a highest wave crest of nearly 90”. He confirmed 
Peney and Price’sz1 theoretical prediction that the maximum wave height/wavelength ratio is 
0.218. Using a higher-order theory, Schwartz and Whitney” showed that this ratio should be 
0.208. 

In Taylor’s experiments the water depth is 15.5 cm and the length of the tank is 32.9 cm. 
A hinged type of wave-maker was installed at both ends of the tank. The depth of the hinge was 
10 cm and the length of the wave-maker is 226 cm. The natural frequency of the wave tank can be 
calculated from (35) with L =  32.9 cm and h =  15.5 cm, which results in T= 13,653 s. The laborat- 
ory experiments satisfy the deep water condition. 

In the present computations three wave depths are used, h=5, 10 and 15.5 cm. The length of 
the tank is the same as that of Taylor’s experiment. Two piston-type wave-makers are used as the 
boundary conditions: 

!??=ox, dn sin (wt)  on r, and r,. (38) 

The wave-makers stop moving after four wave periods. The strokes are varied such that standing 
waves remain in the basin after the wave-makers are stopped. The maximum wave height is 
determined when the acceleration of the fluid particle at the crest becomes larger than the 
gravitational acceleration. In the present computations the stroke is 1 YO of the wavelength. The 
boundary is divided into 120 elements (50 elements on the free surface, 20 elements each on the 
lateral boundaries and 30 elements on the bottom boundary). The time step size is 0.0005 s. 
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Figure 15. Evolution of free surface displacements of a standing wave; the water depth is 15.5 cm 
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Figure 16. Comparison between numerical results (-) and Taylor's experimental data (0 0 0) 
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Figure 17. Time history of energy components in a standing wave; the wave-maker was stopped at the end of the fourth 
period 

In Figure 15 the evolution of free surface displacements is displayed for the case where 
h= 15.5 cm. Because of the resonance, the amplitudes grow in time. The maximum wave height is 
reached at t = 1.74 s. The comparison between the numerical solutions and Taylor's experi- 
mental data is given in Figure 16. The agreement is reasonable. The wave steepness H/A is about 
0.195, which is lower than predicted by theory. The minimum angle at the crest is almost 90". In 
Figure 17 the time history of energy components is shown. The total energy remains constant 
after the wave-makers stop moving. 

For the shallower water case, h = 5 cm, the wave steepness at the maximum wave height is 
smaller, H/ii=0.152. However, the minimum surface angle at the crest remains as 90". 

7. CONCLUDING REMARKS 

A numerical algorithm has been developed for tracking the free surface movement in two 
dimensions. The algorithm is very robust and is used to produce solutions for highly non-linear 
problems such as overturning waves and highest standing waves. The accuracy of the solutions 
has been examined by checking the conservation of mass and energy. 

The periodic Green function introduced in the paper does not show any advantage in terms of 
computational efficiency over the free surface Green function. However, it has been demonstrated 
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that for a three-dimensional problem where the ratio of the number of free surface elements to the 
total number of boundary elements is small the periodic Green function approach can gain 
significant efficiency. 
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